REGIONE PIEMONTE PROVINCIA DI NOVARA COMUNE DI BOCA

DECRETO MINISTERIALE 11/03/88

"Norme tecniche riguardanti le indagini sui terreni e sulle rocce, la stabilità dei pendii naturali e delle scarpate, i criteri generali e le prescrizioni per la progettazione, l'esecuzione ed il collaudo delle opere di sostegno delle terre e delle opere di fondazione"

DECRETO MINISTERIALE 17/01/2018

"Aggiornamento Norme tecniche sulle costruzioni"

Classe I di P.R.G.C.

COSTRUZIONE DI UN NUOVO CAPANNONE AD USO DEPOSITO

RELAZIONE GEOLOGICA E GEOTECNICA

Committente: Immobiliare D. & M. S.r.l.

Nebbiuno, Novembre 2023

Dott. Geol. P. Cerri

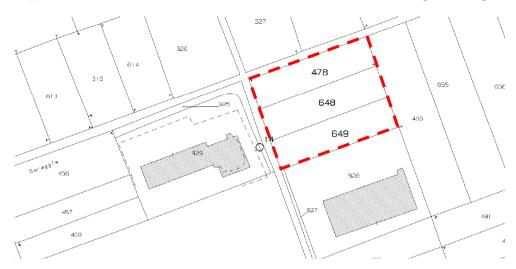
Tel. Fax. 0322/58228 Via Villa Ombrosa, 2 28010 Nebbiuno (NO) e-mail: percerri@intercom.it

Dott. Geol. A. Losa

SOMMARIO

1.	PREMESSA E SCOPO DEL LAVORO	2
2.	INQUADRAMENTO GEMORFOLOGICO, GEOLOGICO E IDROGEOLOGICO	3
2.1	Morfologia e geologia	4
2.2	Idrografia ed idrogeologia	
2.3	Stratigrafie note per valutazioni geotecniche	6
2.4	Analisi dei vincoli	9
3.	CARATTERIZZAZIONE SISMICA DELL'AREA DI INTERVENTO	10
3.1	Brevi note sulla liquefazione	15
4.	INDAGINI IN SITÒ E CARATTERIZZAZIONE GEOTECNICA DEL TERRENO	16
4.1	Prova penetrometrica dinamica (PPD)	17
4.	1.1 Metodologia di elaborazione dei dati penetrometrici	22
4.	1.2 Dati e parametri geotecnici	22
4.2	Pozzetto esplorativo	25
4.3	Parametrazione geotecnica mediante PPD delle litologie investigate	25
5 G	EOTECNICA FONDAZIONI IN PROGETTO	26
5.1	Fondazioni superficiali - determinazione della pressione Rd (SLU)	26
5.2	Determinazione dei cedimenti dei terreni fondali allo stato limite d'esercizio D.M. 1	17.01.2018
(SLE	E) 28	
6.	TERRE E ROCCE DA SCAVO	29
7.	CONSIDERAZIONI CONCLUSIVE	30

ALLEGATI NEL TESTO


- Estratto catastale
- Estratto Carta Tecnica Regionale Sezione 094100 Scala 1:10.000
- Estratto da foto aerea (Google Maps)
- Estratto della tav. 1 "Carta geologica, geomorfologica e dei dissesti" in scala 1:10.000
- Estratto di tav.3 "Rilievo freatimetrico" in scala 1:10.000 del P.R.G.C. vigente
- Estratto di tav.2 "Carta idrogeologica e della caratterizzazione litotecnica" in scala 1:10.000
- Estratti dalla Banca Dati Geotecnica dell'Arpa Piemonte
- Estratto della tav. 10 "Carta di sintesi della pericolosità geomorfologica e dell'idoneità all'utilizzazione urbanistica su base C.T.R." in scala 1:10.000 del PRGC vigente
- Zonazione sismica del Piemonte
- Estratto planimetria generale con ubicazione indagini e sezioni interpretative
- Documentazione fotografica e istogrammi prove penetrometriche (PPD N°1,2,3,4,5)

ALLEGATI FUORI TESTO

- Tav.1 Planimetria con indagini e sezioni interpretative – in scala 1:200

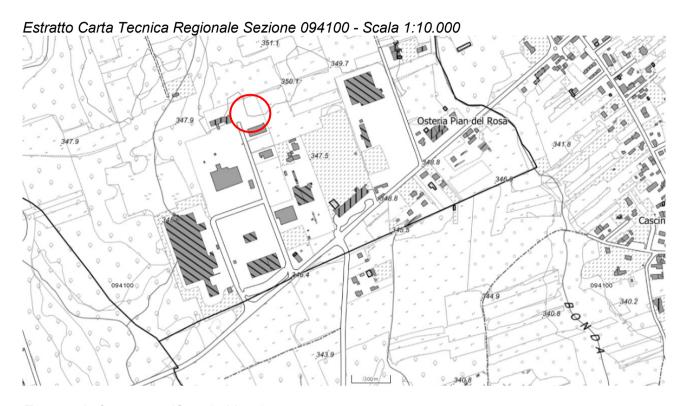
1. PREMESSA E SCOPO DEL LAVORO

La Committenza intende realizzare un nuovo capannone ad uso deposito nei terreni di proprietà siti in Via Brughera IV s.n.c., in Comune di Boca (NO). I lotti di intervento sono identificabili al catasto Foglio 9 – Mappali 478-648-649, come indicato nell'estratto catastale di seguito allegato.

L'area è censita nel vigente PRGC in classe di edificabilità I: porzioni di territorio dove le condizioni di pericolosità geomorfologica sono tali da non porre limitazioni alle scelte urbanistiche.

Per tale intervento la Committenza ha incaricato la scrivente di redigere una dettagliata relazione geologica e geologico-tecnica con relativi elaborati cartografici, atta ad illustrare le condizioni geologiche, geomorfologiche ed idrogeologiche del lotto di pertinenza e di un'area estesa ai lati per una superficie sufficiente a valutare l'eventuale presenza di rischi specifici per l'intervento in narrativa e relativi interventi da eseguirsi.

A tale scopo sono stati eseguiti sopralluoghi atti alla verifica dell'assetto dell'area sia dal punto di vista geomorfologico che idrogeologico; la parametrazione geotecnica dei materiali interessati è stata ricavata da n. 5 indagini penetrometriche eseguite in sito in data 15 Novembre 2023, oltre che dalle informazioni del P.R.G.C. vigente.

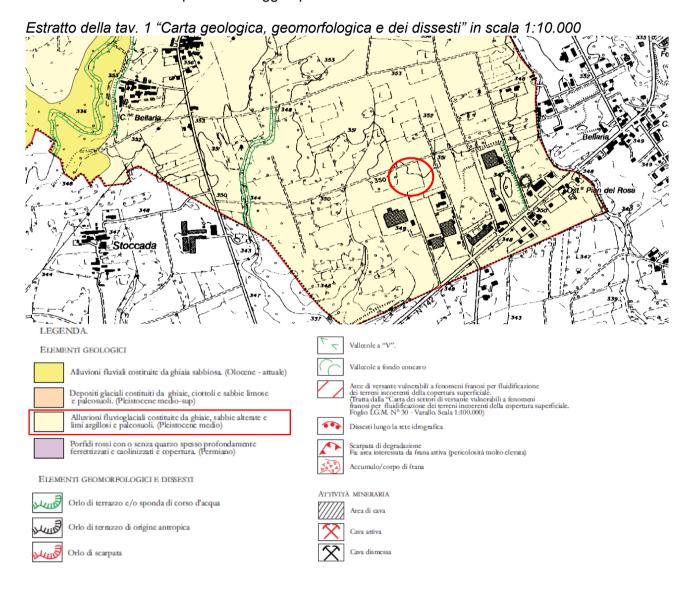

I parametri ricavati hanno consentito di valutare la compatibilità dell'intervento con la stabilità dell'area, quantitativamente calcolata ai sensi del D.M. 17/01/2018, tramite caratterizzazione geotecnica dei litotipi presenti e con la determinazione dei cedimenti dei terreni fondali.

La relazione viene redatta in conformità alla legislazione vigente, con particolare riferimento:

- D.M. 11/03/88: "Norme tecniche riguardanti le indagini sui terreni e sulle rocce, la stabilità dei pendii naturali e delle scarpate, i criteri generali e le prescrizioni per la progettazione, l'esecuzione ed il collaudo delle opere di sostegno delle terre e delle opere
- D.M. 17/01/2018 "Aggiornamento Norme tecniche per le costruzioni".
- Circolare 21 gennaio 2019 C. S.LL.PP. n°7 Istruzioni per l'applicazione dell'"Aggiornamento delle nuove norme tecniche per le costruzioni" di cui al Decreto Ministeriale 17 gennaio 2018.
- Piano Regolatore Comunale del Comune di Boca (NO).

2. INQUADRAMENTO GEMORFOLOGICO, GEOLOGICO E IDROGEOLOGICO

I lotti di indagine sono situati in località Piano Rosa ad una quota media di 350 m s.l.m.. L'area è inquadrabile nella cartografia ufficiale alla Sezione n° 094100 della Carta Tecnica Regionale in scala 1: 10.000 (si veda estratto di seguito allegato).

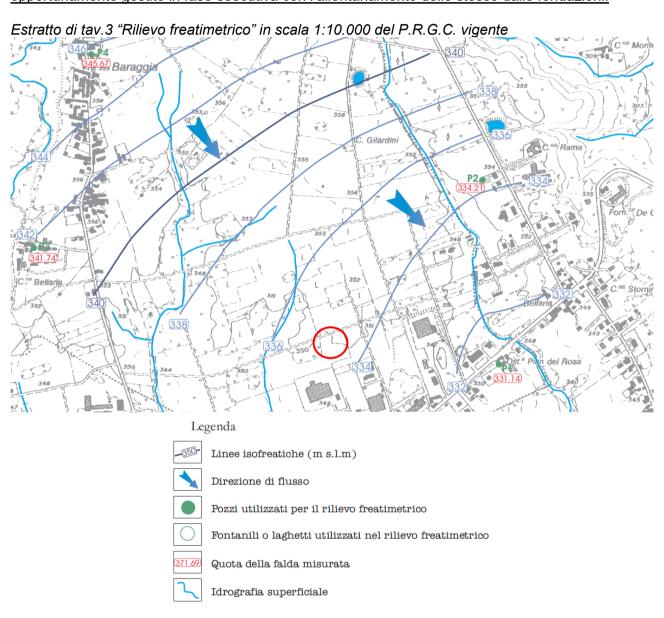

2.1 Morfologia e geologia

L'area in esame è situata nella porzione meridionale del territorio comunale di Boca, al confine con il Comune di Cureggio a sud-est ed il Comune di Cavallirio a sud-ovest. Il lotto è generalmente subpianeggiante ma presenta uno strato di c.a. 1,5 m di materiali di riporto, identificato nelle indagini penetrometriche eseguite in sito, con una lieve pendenza verso la via di accesso pubblica (ovest).

Dal punto di vista geologico, il territorio Comunale di Boca è caratterizzato da:

- *Substrato roccioso*: Porfidi di età permiana affioranti nel settore nord-occidentale del territorio comunale, in particolare nei versanti che si sviluppano a ridosso dell'abitato di Boca.
- Depositi superficiali:
 - Alluvioni fluviali: ghiaie sabbiose caratterizzanti l'alveo più recente dei corsi d'acqua;
 - Depositi glaciali: diamicton con ghiaie, ciottoli e sabbie limose, con paleosuoli mediamente evoluti (spessore massimo di circa 50 cm).
 - Depositi fluvioglaciali: affiorano nel settore pianeggiante meridionale del territorio comunale, compresa l'area in esame, e sono costituiti da alluvioni fluvioglaciali ghiaiose e sabbiose, alternate a limi argillosi e ricoperte da paleosuoli e loess.

L'area d'indagine è costituita dai depositi **fluvioglaciali: ghiaie e sabbie in matrice fine, alternate a limi argillosi e ricoperte da paleosuoli e loess** (Pleistocene medio). Il grado di alterazione è mediamente elevato in quanto la maggior parte dei clasti risulta friabile al contatto.

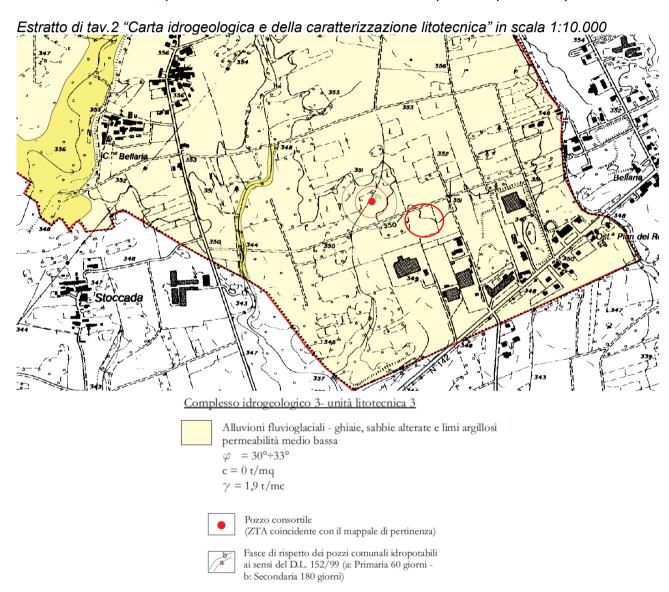


2.2 Idrografia ed idrogeologia

Nel lotto d'intervento e nel suo immediato intorno non sono presenti corsi d'acqua o canalizzazioni delle acque superficiali; si rileva ad oltre 200 m verso Ovest la presenza di un corso d'acqua immissario sinistro del Torrente Strego, che non interferisce con l'intervento in progetto.

L'area in esame appartiene al complesso idrogeologico delle alluvioni fluvioglaciali: ghiaie e sabbie con limi argillosi e paleosuoli, caratterizzati da una permeabilità medio-bassa (10⁻³-10⁻⁶ m/sec).

La frazione di Piano Rosa mostra una direzione di flusso della falda orientata verso S-SE, con valori di soggiacenza compresa tra 11,94 m (P5) ed un massimo di 19,79 m (P2). Nel terreno in esame si stima una **soggiacenza** di **15,00 metri** dal piano campagna, in quanto l'isopiezometrica ha quota di 335 m s.l.m.. Tale falda non interferisce con le opere in esame ma <u>la presenza di terreni superficiali con componente argillosa comporta un ristagno delle acque meteoriche che dovrà essere opportunamente gestito in fase esecutiva con l'allontanamento delle stesse dalle fondazioni.</u>



2.3 Stratigrafie note per valutazioni geotecniche

Nel Piano Regolatore Comunale viene riportata una stima dei parametri geotecnici come prima indicazione media e cautelativa. L'area in esame rientra nell'unità litotecnica 3 – alluvioni fluvioglaciali:

- angolo di attrito (φ) è pari a 30°-33°;
- peso di volume γ è 1,9 t/mc;
- coesione c = 0 t/mq.

Nella tavola 2 di Piano Regolatore viene riportata la presenza di un pozzo consortile a nord-ovest dell'area d'intervento, quest'ultima risulta esterna alle fasce di rispetto del pozzo idropotabile.

L'Arpa Piemonte dispone di una banca dati geotecnica accessibile tramite geoportale e nell'intorno dell'area d'intervento si rinvengono diverse indagini geognostiche. In particolare, si sono consultate le stratigrafie di n.3 pozzi che hanno intercettato la presenza di depositi fluvioglaciali ciottolosi grossolani, alterati in "ferretto" e con coperture loessiche:

- *p100*: codice perforazione 10012054, con profondità massima raggiunta di 75 metri e quota piano campagna 347 m s.l.m.
- *p095*: codice perforazione 10012052, con profondità massima raggiunta di 80 metri e quota piano campagna di 347 m s.l.m.
- *p099*: codice perforazione 10012053, con profondità massima raggiunta di 65 metri e quota piano campagna 347 m s.l.m.

Stratigrafia Pozzo p100

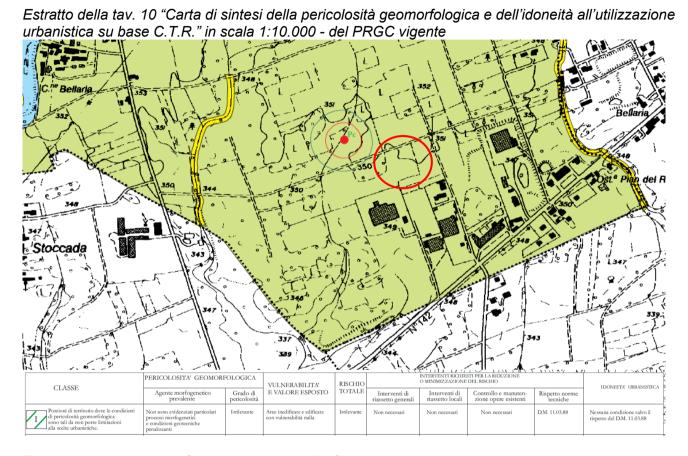
Nome perforazione	Comune	Provincia	Località
p100	Boca	NO	Boca
Data inizio perforazione	Data fine perforazione	Profondità (m)	Cantiere
		75.00	

Codice perforazione	Profondità (m)	Descrizione	
10012054	3.00	riporto	
10012054	7.00	terreno misto inmatrice argillosa	
10012054	11.00	argilla compatta conciottoli	
10012054	15.00	argilla sabbiosa	
10012054	20.00	argilla compatta con lenti di porfido	
10012054	25.00	argilla debolmente limosa con ciottoli	
10012054	45.00	argilla sabbiosa con ciottoli cementati e lenti di porfido	
10012054	46.00	trovante	
10012054	48.00	porfido compatto	
10012054	49.00	trovante	
10012054	51.00	argilla compatta	
10012054	53.00	trovanti con argilla compatta	
10012054	57.00	ciottoli cementati e sabbia argillosa	
10012054	60.00	argilla sabbiosa con ciottoli	
10012054	65.00	porfido compatto alternato a lenti di porfido fratturato	
10012054	69.00	argilla sabbiosa	
10012054	75.00	porfido compatto	

Stratigrafia Pozzo p095

Codice perforazione	Profondità (m)	Descrizione
10012052	16.00	ghiaia con argilla
10012052	29.00	ghiaia
10012052	50.00	argilla intervallata da stati di sabbia
10012052	61.00	argilla
10012052	65.00	ghiaia con argilla
10012052	80.00	argilla intervallata da strati di sabbia

Stratigrafia Pozzo p099


Codice perforazione	Profondità (m)	Descrizione	
10012053	2.00	suolo argilloso	
10012053	15.00	ghiaia con argilla e ciottoli, alterata	
10012053	38.00	ghiaia, debolmente argilloso	
10012053	45.00	argilla	
10012053	48.00	ghiaia con argilla debolmente alterata, ciottoli poligenici	
10012053	65.00	argilla	

Tutte le stratigrafie evidenziano la presenza di argilla con ciottoli e ghiaia, alternate a livelli sabbiosi e alcuni trovanti sino a circa -65 m dal piano campagna.

A profondità maggiori si evidenzia la presenza del substrato porfirico fratturato alternato a porzioni più compatte.

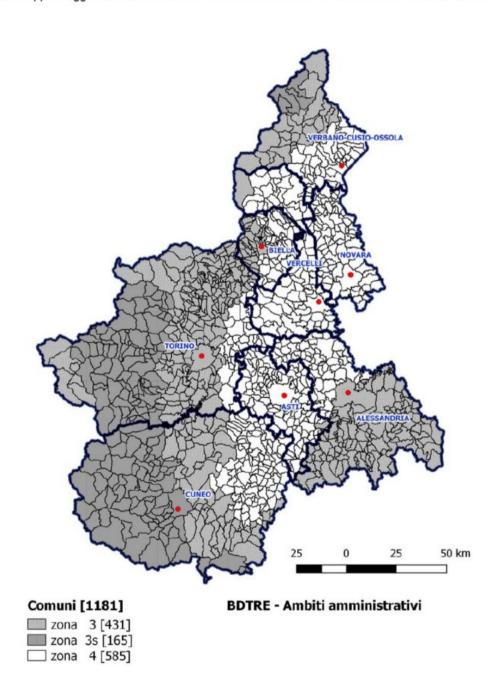
2.4 Analisi dei vincoli

Nel P.R.G.C. vigente l'area in esame è inserita nella **classe di fattibilità geologica I:** porzioni di territorio dove le condizioni di pericolosità geomorfologica sono tali da non porre limitazioni alle scelte urbanistiche.

Estratto della Normativa Geologica relativa alla Classe I:

CLASSE I

Porzioni di territorio dove le condizioni di pericolosità geomorfologica sono tali da non porre limitazioni alle scelte urbanistiche. In questa classe è inclusa la porzione di territorio comunale, coincidente con la zona pianeggiante, che non presenta problematiche dal punto di vista urbanistico. Si ricorda tuttavia che ogni nuova opera da realizzare sarà soggetta alle prescrizioni contenute nel D.M. 11.03.1988 "Norme tecniche riguardanti le indagini sui terreni e sulle rocce, la stabilita" dei pendii naturali e delle scarpate, i criteri generali e le prescrizioni per la progettazione, l'esecuzione ed il collaudo delle opere di sostegno delle terreni. Le nuove edificazioni nei territori inclusi in questa classe sono comunque da ritenersi soggette a eventuali vincoli presenti, quali ad esempio quello relativo alla salvaguardia del pozzo idropotabile comunale presente in località Pian del Rosa.


3. CARATTERIZZAZIONE SISMICA DELL'AREA DI INTERVENTO

Dal punto di vista sismico il territorio di Boca (NO), in base al D.G.R. n° 11-13058 del 19/01/2010 "Aggiornamento e adeguamento delle zone sismiche (O.P.C.M. n° 3274/2003 e O.P.C.M. 3519/2006)" è inserito in **zona sismica 4**, ossia la categoria a minor rischio sismico. Il valore di accelerazione con probabilità di superamento del 10% in 50 anni (ag) è \leq 0,05 g.

Zonazione sismica del Piemonte

MAPPA DI ZONAZIONE SISMICA

La mappa è aggiornata alla situazione amministrativa esistente alla data del 6 febbraio 2019

In base alle informazioni geologiche generali del territorio comunale ed alle indagini geotecniche condotte in sito si ricava che il terreno presente nell'area di intervento è classificabile nella **CATEGORIA DI SUOLO TIPO C** (si veda la tabella 3.2.II allegata ed estratta da D.M. 17.01.2018 cap. 3.2.2).

Categoria Caratteristiche della superficie topografica			
A	Ammassi rocciosi affioranti o terreni molto rigidi caratterizzati da valori di velocità delle onde di taglio superiori a 800 m/s, eventualmente comprendenti in superficie terreni di caratteristiche meccaniche più scadenti con spessore massimo pari a 3 m.		
Rocce tenere e depositi di terreni a grana grossa molto addensati o terreni a grana fina molto consi- B stenti, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e o valori di velocità equivalente compresi tra 360 m/s e 800 m/s.			
С	Depositi di terreni a grana grossa mediamente addensati o terreni a grana fina mediamente consi- stenti con profondità del substrato superiori a 30 m, caratterizzati da un miglioramento del- le proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 180 m/s e 360 m/s.		
D	Depositi di terreni a grana grossa scarsamente addensati o di terreni a grana fina scarsamente consi- stenti, con profondità del substrato superiori a 30 m, caratterizzati da un miglioramento del- le proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 100 e 180 m/s.		
Е	Terreni con caratteristiche e valori di velocità equivalente riconducibili a quelle definite per le categorie C o D, con profondità del substrato non superiore a 30 m.		

Facendo riferimento alle categorie topografiche del D.M. 17.01.2018 l'area di intervento ricade nella categoria T1, essendo ubicata in area con inclinazione media i<15°.

Tab. 3.2.III – Categorie topografiche

Categoria	Caratteristiche della superficie topografica			
T1	Superficie pianeggiante, pendii e rilievi isolati con inclinazione media i ≤ 15°			
T2	Pendii con inclinazione media i > 15°			
Т3	Rilievi con larghezza in cresta molto minore che alla base e inclinazione media 15° ≤ i ≤ 30°			
T4	Rilievi con larghezza in cresta molto minore che alla base e inclinazione media i > 30°			

AZIONE SISMICA LOCALE RIFERITA ALLE NORME TECNICHE PER LE COSTRUZIONI D.M. 17/01/2018

L'azione sismica locale si determina considerando:

- la vita nominale dell'opera,
- i parametri sismici dell'area, adattati alla situazione stratigrafica e topografica locale
 - ag (accelerazione orizzontale)
 - Fo (fattrice accelerazione massima riferita al suolo rigido tipo A)
 - T* (periodo inizio tratto spettro accelerazione costante (in secondi).

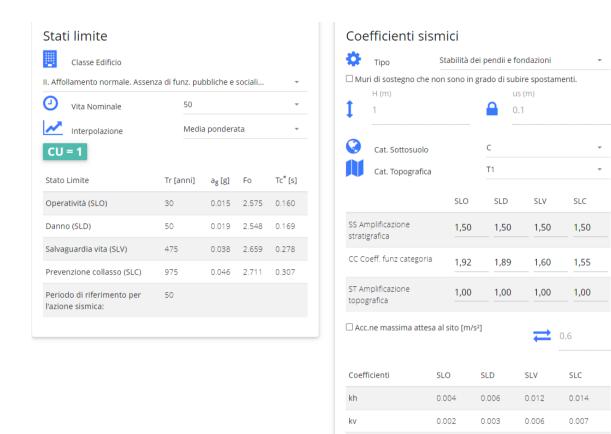
Le coordinate geografiche del sito in esame sono state ricavate in dati WGS84 (World Geodetic System 1984) e successivamente trasformate in coordinate ED50 (European Datum 1950) che è il sistema di coordinate di riferimento del reticolo sismico

coordinate **WGS84**: 45.664443,8.433594 coordinate **ED50**: 45.665379,8.434674

All'opera di esame si attribuisce una vita nominale V_N =50 anni ed una classe d'uso II (Affollamento normale. Assenza di funz. pubbliche e sociali...).

Pertanto:

```
V_R: periodo di riferimento per l'azione sismica
Cu: coefficiente classe uso = 1
V_R= V_N x Cu = 50 x 1 = 50 anni
```


Per quanto riguarda le probabilità P_{VR} di superamento nel periodo di riferimento V_R esse variano al variare dello stato limite considerato ed in particolare, facendo riferimento alla tabella 3.2.I del D.M. 17/01/2018:

```
\begin{array}{llll} \textbf{STATI LIMITE D'ESERCIZIO} \text{ (SLE):} \\ \text{SLO} = & T_{R} = 30 \text{ anni} \\ \text{SLD} = & T_{R} = 50 \text{ anni} \\ \textbf{STATI LIMITE ULTIMI (SLU):} \\ \text{SLV} = & T_{R} = 475 \text{ anni} \\ \text{SLC} = & T_{R} = 975 \text{ anni} \\ \end{array}
```

Dove:

- **SLO** = Stato Limite di Operatività: a seguito del terremoto la costruzione nel suo complesso, includendo gli elementi strutturali, quelli non strutturali, le apparecchiature rilevanti alla sua funzione, non deve subire danni ed interruzioni d'uso significativi;
- **SLD** = Stato Limite di Danno: a seguito del terremoto la costruzione nel suo complesso, subisce danni tali da non mettere a rischio gli utenti mantenendosi immediatamente utilizzabile pur nell'interruzione d'uso di parte delle apparecchiature.
- **SLV** = Stato Limite di Salvaguardia della Vita: a seguito del terremoto la costruzione subisce rotture e crolli dei componenti non strutturali ed impiantistici e significativi danni dei componenti strutturali; la costruzione conserva invece una parte di resistenza e rigidezza per azioni verticali e un margine di sicurezza nei confronti del collasso per azioni sismiche orizzontali;
- **SLC** = Stato Limite di prevenzione del Collasso: a seguito del terremoto la costruzione subisce gravi rotture e crolli nei componenti non strutturali ed impiantistici e danni molto gravi dei componenti strutturali; la costruzione conserva ancora un margine di sicurezza per azioni verticali ed un esiguo margine di sicurezza nei confronti del collasso per azioni orizzontali.

Per gli stati limite d'interesse, tramite il programma di calcolo "Spettri NTC vers. 1.0.2" del Consiglio Superiore dei Lavori Pubblici, si ricavano i seguenti parametri sismici di riferimento:

Spettri di risposta

Amax [m/s²]

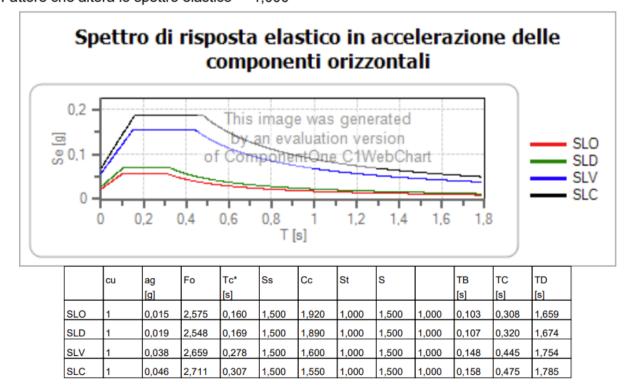
Beta

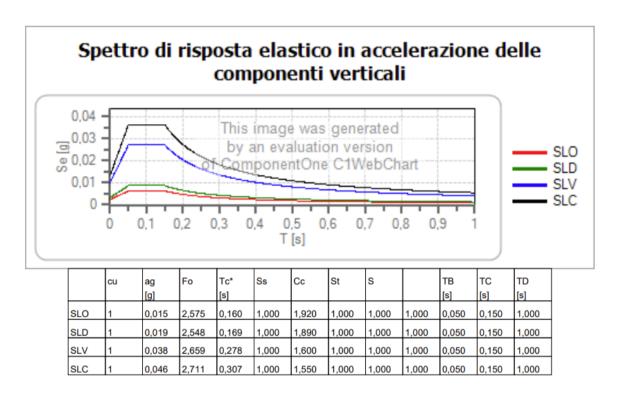
0.218

0.200

0.272

0.200

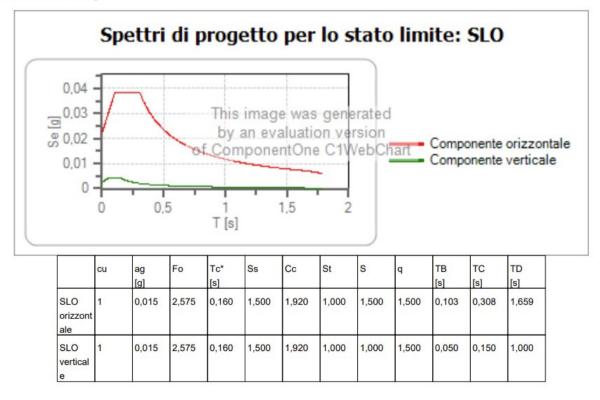

0.566


0.200

0.679

0.200

Spettro di risposta elastico in accelerazione delle componenti orizzontali e verticali Coefficiente di smorzamento viscoso = 5 %
Fattore che altera lo spettro elastico = 1,000



Spettro di progetto

Coefficiente di struttura q per lo spettro orizzontale = 1.5

per lo spettro orizzontale = 0,667 Coefficiente di struttura q per lo spettro verticale = 1.5 per lo spettro verticale = 0,667

Stato limite: SLO

3.1 Brevi note sulla liquefazione

Per liquefazione dei terreni si intende la perdita quasi totale della resistenza al taglio e l'assunzione di un comportamento meccanico caratteristico dei liquidi. In pratica ciò accade quando una sollecitazione sismica induce nel terreno sforzi tangenziali che superano la pressione interstiziale: nei terreni in falda i rapidi cambiamenti di pressione indotti dalle onde d'urto determinano l'espulsione dell'acqua verso l'esterno della porzione di terreno sollecitata, con mutamenti di volume del terreno. I fenomeni di liquefazione, pertanto, interessano essenzialmente i depositi sabbiosi saturi e dipendono dai seguenti fattori:

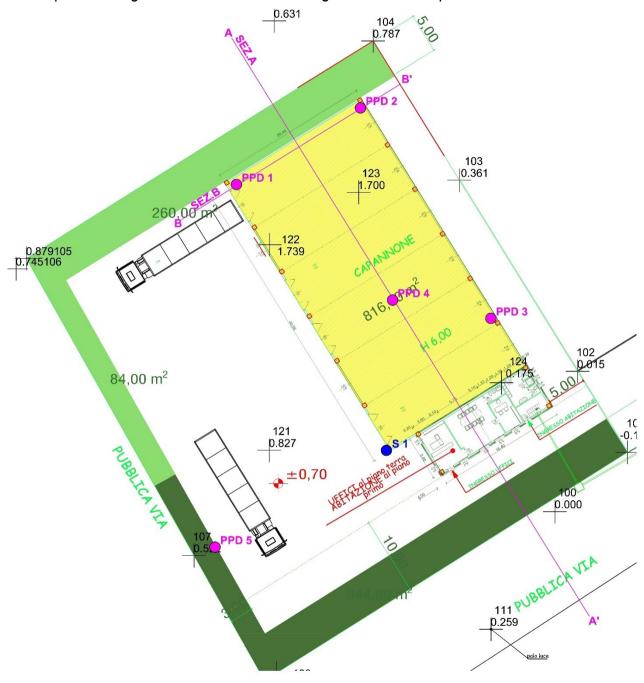
- proprietà geotecniche dei terreni (granulometria, spessore, addensamento, presenza della falda),
- caratteristiche del sisma (in termini di durata e di ampiezza d'onda),
- tipologia geologica dei terreni (età e genesi),
- fattori ambientali.

Semplificando si possono ritenere a rischio liquefazione quei terreni appartenenti a depositi sciolti che presentano le seguenti caratteristiche:

- sono costituiti da sabbie fini-medie, con matrice fine compresa tra 0-25%,
- siano in falda.
- siano da poco a mediamente addensati,
- si trovino a basse profondità (di solito inferiori ai 15 m).

In base al D.M. 17.01.2018 la presenza di almeno uno dei seguenti fattori permette di omettere la verifica alla liquefazione:

- 1. accelerazioni massime attese al piano campagna in assenza di manufatti (condizioni di campo libero) minori di 0,1g;
- 2. profondità media stagionale della falda superiore a 15,00 m dal p.c., per piano campagna suborizzontale e strutture con fondazioni superficiali
- 3. depositi costituiti da sabbie pulite con resistenza penetrometrica normalizzata N*60 > 30 oppure qc1N > 180:
- 4. distribuzione granulometrica inferiore o maggiore del fuso granulometrico delle sabbie.

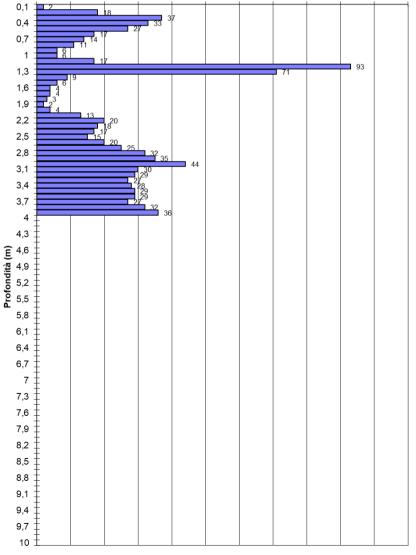

I dati sismici salienti sono dunque i seguenti:

- Classe sismica 4, ag è ≤ 0,05 g
- Tipo di suolo: C
- Categoria topografica: T1
- Terreni fluvioglaciali: ghiaie e sabbie in matrice fine, alternate a limi argillosi e ricoperte da paleosuoli e loess.
- Depositi sabbioso-ghiaiosi con N (60) SPT > 30
- Falda acquifera con soggiacenza di -15,00 m dal p.c.
 - → La normativa consente l'esclusione dalla verifica alla liquefazione.

4. INDAGINI IN SITO E CARATTERIZZAZIONE GEOTECNICA DEL TERRENO

Come accennato in premessa, l'area di intervento è stata indagata in data 15 novembre 2023 con n.5 prove penetrometriche ed n.1 pozzetto esplorativo che hanno consentito di determinare le principali caratteristiche geotecniche dei terreni. Le indagini sono ubicate come riportato nella planimetria di seguito allegata.

Estratto planimetria generale con ubicazione indagini e sezioni interpretative


4.1 Prova penetrometrica dinamica (PPD)

Documentazione fotografica e istogramma prova penetrometrica n.1

Istogramma - Prova Penetrometrica Dinamica n°1
NUOVA EDIFICAZIONE CAPANNONE AD USO DEPOSITO
sito in Comune di BOCA (NO) - Via brughera IV s.n.c.
Committente: Immobiliare D & M srI

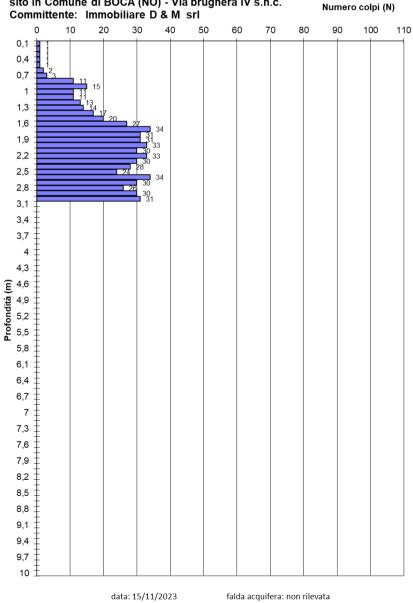
0 10 20 30 40 50 60 70 80
0,1

data: 15/11/2023

falda acquifera: non rilevata

Numero colpi (N)

100


110

90

Documentazione fotografica e istogramma prova penetrometrica n.2

Istogramma - Prova Penetrometrica Dinamica n°2 NUOVA EDIFICAZIONE CAPANNONE AD USO DEPOSITO sito in Comune di BOCA (NO) - Via brughera IV s.n.c.

falda acquifera: non rilevata

Documentazione fotografica e istogramma prova penetrometrica n.3

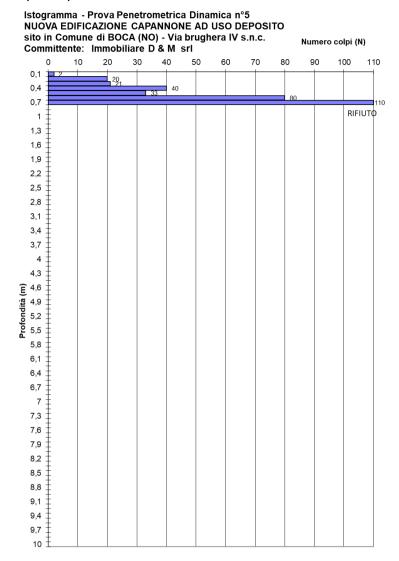
Istogramma - Prova Penetrometrica Dinamica n°3 NUOVA EDIFICAZIONE CAPANNONE AD USO DEPOSITO sito in Comune di BOCA (NO) - Via brughera IV s.n.c.

Numero colpi (N) Committente: Immobiliare D'& M srl 70 90 30 60 80 100 110 0,1 0,4 0,7 1,3 1,6 1,9 2,2 2,5 2,8 3,1 3,4 3,7 4,3 4,6 Profondità (m) 4,9 5,2 5,5 5,8 6,1 6,4 6,7 7,3 7,6 7,9 8,2 8,5 8,8 9,1 9,4 9,7 10 🖠

data: 15/11/2023 falda acquifera: non rilevata

Documentazione fotografica e istogramma prova penetrometrica n.4

Istogramma - Prova Penetrometrica Dinamica n°4 NUOVA EDIFICAZIONE CAPANNONE AD USO DEPOSITO sito in Comune di BOCA (NO) - Via brughera IV s.n.c.


sito in Comune di BOCA (NO) - Via brughera IV s.n.c. Numero colpi (N) Committente: Immobiliare D & M srl 70 80 90 100 60 110 0,1 PRESCAVO 63 0,4 0,7 1,3 1,6 1,9 2,2 2,5 2,8 3,1 3,4 3,7 4,3 4,6 Profondità (m) 4,9 5,2 5,5 5,8 6,1 6,4 6,7 7,3 7,6 7,9 8,2 8,5 8,8 9,1 9,4 9,7 10

data: 15/11/2023

falda acquifera: non rilevata

Documentazione fotografica e istogramma prova penetrometrica n.5

Le prove sono state eseguite utilizzando un penetrometro dinamico tipo TECNOTEST (TP 223/S) motorizzato che utilizza una massa battente di 30 kg, con un'altezza di caduta della stessa di 20 cm; il numero di colpi di riferimento è per un avanzamento in profondità di 10 cm, la punta conica ha un angolo α = 60°, diametro D=35.7 mm e superficie A= 10 cm².

Facendo riferimento alla classificazione ISSMFE (*International society for soil mechanics and geotechnical engineering* -1988) il penetrometro utilizzato è classificabile come penetrometro di tipo Medio (DPM).

Classificazione ISSMFE dei penetrometri dinamici:

TIPO	SIGLA DI RIFERIMENTO	PESO DELLA MASSA M (kg)
LEGGERO DPL (LIGHT)		M<10
MEDIO	DPM (MEDIUM)	10 <m<40< th=""></m<40<>
PESANTE	DPH (HEAVY)	40 <m<60< td=""></m<60<>
SUPER PESANTE	DPSH	M>60

4.1.1 Metodologia di elaborazione dei dati penetrometrici

La parametrazione geotecnica dei terreni è stata ottenuta dalle correlazioni con il numero di colpi delle prove penetrometriche dinamiche eseguite. La prova penetrometrica di riferimento per la quale risulta disponibile una vasta bibliografia per la caratterizzazione geotecnica dei terreni è la prova SPT (Standard Penetration Test); per ottenere il numero di colpi della prova SPT dal numero di colpi registrato in sito con il penetrometro utilizzato (N) si applica un coefficiente di correzione (B). Il coefficiente di correzione B rappresenta il rapporto tra l'energia specifica alla penetrazione riferita alla tipologia di penetrometro impiegato e l'energia della prova SPT. Per il tipo di penetrometro utilizzato per l'indagine geotecnica in narrativa il numero di colpi N_{SPT} si ricava mediante l'espressione: N_{SPT} = B x N. Dove B assume valori variabili in funzione del terreno:

B = 1 se N è inferiore a 7
B = 0,78 se N è compreso fra 8 e 14 terreni granulari
B = 0,9 se N è compreso fra 15 e 18 terreni granulari
B = 0,97 se N è compreso fra 8 e 15 terreni coesivi
B = 1,1 se N è compreso fra 15 e 30 terreni coesivi

4.1.2 Dati e parametri geotecnici

I parametri geotecnici rilevanti sono i seguenti:

• <u>Densità relativa (Dr)</u>: è attribuita in funzione di N'_{SPT} secondo il diagramma di correlazione di Terzaghi-Peck di seguito riportato;

Tabella 7.8 Correlazione tra la densità relativa delle sabbie ed i valori di N_{SPT}.

N _{SPT}	Densità relativa		
Colpi/30 cm	Terzaghi-Peck (1948)	Gibbs-Holtz (1957)	
0-4	molto sciolta	0-15%	
4-10	sciolta	15-35%	
10-30	media	35-65%	
30-50	densa	65-85%	
oltre 50	molto densa	85-100%	

 <u>Angolo d'attrito (φ)</u>: è attribuito in funzione di N'_{SPT} secondo il diagramma di correlazione di Meyerhof di seguito riportato;

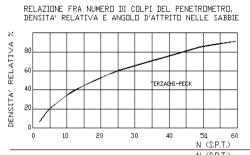
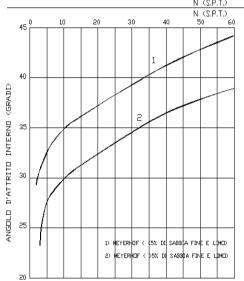



Diagramma di Meyerhof

 <u>Peso di volume secco (γd)</u>: i valori di peso di volume attribuiti alle litologie presenti nell'area di intervento sono riportati nello schema sottostante.

Valori caratteristici del peso di volume secco (γ d) e saturo (γ) di alcuni tipi di terreno (R. Lancellotta)

Terreno	γd (kN/m³)	γ (kN/m³)
Ghiaia	14-21	18-23
Sabbia	13-18	16-21
Limo	13-19	16-21
Argilla tenera	7.0-13	14-18
Argilla compatta	14-18	18-21
Torba	1.0-5	10.0-13

Di seguito si riportano le caratteristiche geotecniche dei terreni investigati ricavate dall'interpretazione della prova penetrometrica eseguita:

PROVA N°1

Profondit da	tà da p.c. a	N'SPT medio	Angolo d'attrito φ	Densità relativa Dr	Peso di volume γd	Note
0,00 m	- 1,30 m	24	33	60%	18 kN/mc = 1,80 t/mc	Terreno di riporto denso
-1,30 m	-2,00 m	4	27°	20%	17 kN/mc = 1,70 t/mc	Terreno vegetale molto sciolto
-2,00 m	-2,60 m	15	31°	42%	18 kN/mc = 1,80 t/mc	Terreno mediamente addensato argilloso
-2,60 m	-3,90 m	28	34°	63%	19 kN/mc = 1,90 t/mc	Terreno mediamente addensato-denso argilloso

Falda acquifera non rilevata.

PROVA N°2

Profondit da	tà da p.c. a	N'SPT medio	Angolo d'attrito φ	Densità relativa Dr	Peso di volume γd	Note
0,00 m	- 0,70 m	2	//	//	17 kN/mc = 1,70 t/mc	Terreno vegetale molto sciolto
-0,70 m	-1,50 m	17	32°	50%	18 kN/mc = 1,80 t/mc	Terreno mediamente addensato argilloso
-1,50 m	-3,00 m	27	34°	63%	19 kN/mc = 1,90 t/mc	Terreno mediamente addensato-denso argilloso

Falda acquifera non rilevata. Terreni umidi per presenza di acqua superficiale a causa delle precipitazioni meteoriche del giorno precedente (14.11.2023)

PROVA N°3

Profondit da	tà da p.c. a	N'SPT medio	Angolo d'attrito φ	Densità relativa Dr	Peso di volume γd	Note
0,00 m	- 0,70 m	2	//	//	17 kN/mc = 1,70 t/mc	Terreno vegetale molto sciolto
-0,70 m	-1,30 m	10	30°	38%	18 kN/mc = 1,80 t/mc	Terreno sciolto argilloso
-1,30 m	-2,90 m	29	34°	63%	19 kN/mc = 1,90 t/mc	Terreno denso argilloso

Falda acquifera non rilevata.

PROVA N°4

Profondit da	tà da p.c. a	N'SPT medio	Angolo d'attrito φ	Densità relativa Dr	Peso di volume γd	Note
0,00 m	- 0,60 m	//	//	//	//	prescavo
-0,60 m	-1,50 m	3	22°	10%	17 kN/mc = 1,70 t/mc	Terreno molto sciolto
-1,50 m	-2,20 m	10	30°	40%	18 kN/mc = 1,80 t/mc	Terreno sciolto argilloso
-2,20 m	-3,30 m	28	34°	63%	19 kN/mc = 1,90 t/mc	Terreno mediamente addensato argilloso

Falda acquifera non rilevata.

PROVA N°5

Profondità da p.c. da a		•		Densità relativa Dr	Peso di volume γd	Note
0,00 m	- 0,70 m	29	34	63	18 kN/mc = 1,80 t/mc	Terreno mediamente addensato
-0,70 m	//	3	>35°	>80%	19 kN/mc = 1,90 t/mc	Terreno fortemente addensato che rifiuta la penetrazione

Falda acquifera non rilevata.

4.2 Pozzetto esplorativo

Durante la realizzazione del prescavo per la realizzazione della prova penetrometrica n.5 è stata intercettata la presenza di acqua al contatto con lo strato argilloso; pertanto, data l'impossibilità ad eseguire tale prova, si è deciso di eseguire la prova penetrometrica n°5 a margine del terreno di proprietà. La posizione del prescavo è identificata in pianta come S1 ed ha permesso l'osservazione diretta dei terreni presenti:

Pozzetto S1

Profondità dal p.c.	Descrizione	
Da 0.00 a - 1,10 m	Terreno di riporto con blocchi e ciottoli di dimensioni variabili con basso grado di consistenza	
Oltre -1,10 m	Argille a elevato grado di addensamento con presenza di acqua	

4.3 Parametrazione geotecnica mediante PPD delle litologie investigate

I risultati ottenuti hanno evidenziato la presenza di terreni a diversa consistenza:

- 1° STRATO: Terreno di riporto con spessore medio 1,5 m nel centro del lotto, con spessori inferiori in prossimità della via pubblica di accesso (Via Brughera IV)

Densità relativa Dr' > 60%

Peso di volume γ ' = 1,8 t/mc

Angolo d'attrito φ' = 33°

Coesione c'= 18,15 t/mg

- 2° STRATO: Terreno vegetale con spessore medio 0,70 m

Densità relativa Dr' > 20%

Peso di volume γ ' = 1,7 t/mc

Angolo d'attrito ϕ ' = 27°

Coesione c'= 3,06 t/mg

- 3° STRATO: Terreno argilloso debolmente addensato con spessore 0,60-0,80 m

Densità relativa Dr' > 42%

Peso di volume γ ' = 1,8 t/mc

Angolo d'attrito φ' = 31°

Coesione c'= 11.50 t/ma

 4° STRATO: Terreno argilloso denso e con aumento dell'addensamento in funzione della profondità

Densità relativa Dr' > 63%

Peso di volume γ ' = 1,9 t/mc

Angolo d'attrito $\phi' = 28^{\circ}$

Coesione c'= 20,77 t/mg

I terreni possiedono **discrete capacità geotecniche** a partire dallo strato n°4, ovvero a circa -2,50 m dal piano campagna in corrispondenza dell'area con il riporto e a circa -1,30 m dove non è presente il riporto. Tale superficie viene rappresentata con una linea rossa nelle sezioni geologiche interpretative, allegate nella tavola 1 a fine testo.

5 GEOTECNICA FONDAZIONI IN PROGETTO

L'intervento in esame consiste nella realizzazione di un nuovo capannone ad uso deposito con una porzione adibita ad uffici, al piano terra, e ad abitazione al piano primo.

Il progetto prevede la realizzazione di fondazioni tipo plinto e come indicazione al progettista sono stati eseguiti i calcoli per plinti di 1x1 m, 2x2 m e 3x3 m. Si prescrive di posare la fondazione in corrispondenza dello strato n° 4 costituito da terreno argilloso denso. Come evidenziato nelle sezioni allegate, tale strato è stato intercettato con le indagini a quote diverse rispetto al piano campagna attuale, proprio a causa della presenza di terreni di riporto non uniformi. Si procede quindi al calcolo delle fondazioni tipo plinto nelle due condizioni più estreme:

- 1) Area con presenza di riporto: posa della fondazione a -2,50 m dal piano campagna attuale,
- 2) Area senza riporto: posa della fondazione a -1,30 m dal piano campagna attuale.

La natura stessa dei terreni, con componente fine argillosa e a bassa permeabilità, non permette un corretto smaltimento delle acque; pertanto, sarà indispensabile realizzare un opportuno drenaggio delle acque meteoriche, allontanandole dalle fondazioni.

Il valore di angolo d'attrito medio per gli strati fondali è pari a 30-34°: a fine cautelativo, si ipotizza un angolo d'attrito in fondazione pari a: $\phi = 30^\circ$.

Al termine coesione, per la determinazione della pressione limite ed ammissibile dei terreni fondali, si è attribuito un valore nullo trattandosi di verifiche a lungo termine, a favore della sicurezza.

<u>Data la natura del terreno si è ipotizzata una parziale saturazione dei terreni al di sotto del piano di</u> imposta delle fondazioni per eventi meteorici intensi.

5.1 Fondazioni superficiali - determinazione della pressione Rd (SLU)

I calcoli per sono stati condotti nel rispetto di quanto previsto dal D.M. 17/01/2018 "Aggiornamento Norme Tecniche per le Costruzioni", impiegando il solo approccio 2:

Approccio 2: Combinazione A1+M1+R3

Tabelle di riferimento dei coefficienti parziali (estratto da D.M. 17/01/2018):

Tab. 6.2.II – Coefficienti parziali per i parametri geotecnici del terreno							
Parametro Grandezza alla quale applicare il coefficiente parziale $\gamma_{ m M}$ (M1)							
Tangente dell'angolo di resi- stenza al taglio	$ an {m \phi'}_k$	$\gamma_{\phi'}$	1,0	1,25			
Coesione efficace	c'_k	γc	1,0	1,25			
Resistenza non drenata	c_{uk}	γ _{cu}	1,0	1,4			
Peso dell'unità di volume	γγ	γ_{γ}	1,0	1,0			

	Effetto	Coefficiente Parziale γ_F (o γ_E)	EQU	(A1)	(A2)
Carichi permanenti Gı	Favorevole	ΥG1	0,9	1,0	1,0
	Sfavorevole		1,1	1,3	1,0
Carichi permanenti G2(1)	Favorevole	γ _{G2}	0,8	0,8	0,8
	Sfavorevole		1,5	1,5	1,3
Azioni variabili Q	Favorevole	Yο	0,0	0,0	0,0
	Sfavorevole		1,5	1,5	1,3

rer i carichi permanenti G: si applica quanto indicato alla Tabella 2.6.1. Per la spinta delle terre si fa riferimento ai coefficienti γοι

 $\textbf{Tab. 6.4.I} - \textit{Coefficienti parziali } \gamma_{R} \textit{ per le verifiche agli stati limite ultimi di fondazioni superficiali}$

Verifica	Coefficiente
	parziale
	(R3)
Carico limite	$\gamma_R = 2.3$
Scorrimento	$\gamma_R = 1.1$

Per il calcolo della pressione limite del terreno di fondazione si utilizza la formula di Brinch-Hansen:

 $qlim = Rd = c' \cdot Nc \cdot sc \cdot dc \cdot ic \cdot bc \cdot gc \cdot zc + q' \cdot Nq \cdot sq \cdot dq \cdot iq \cdot bq \cdot gq \cdot zq + 0, 5 \cdot \gamma \cdot B \cdot N\gamma \cdot s\gamma \cdot d\gamma \cdot i\gamma \cdot b\gamma \cdot g\gamma \cdot z\gamma$ dove:

 γ = peso di volume

c = coesione

B = larghezza della fondazione

 $q' = \gamma x D = carico litostatico (D = profondità imposta fondazione)$

Nγ,Nq,Nc fattori di capacità portante, adimensionali, dipendenti dall'angolo di attrito e

dalla coesione (VESIC)

 $s\gamma$, sq, sc = fattori di forma della fondazione

 $i\gamma$, iq, ic = fattori dipendenti dall'inclinazione del carico

 $b\gamma$, bq, bc = fattori dipendenti dall'inclinazione del piano di posa $d\gamma$, dq, dc = fattori dipendenti dalla profondità del piano di posa $g\gamma$, gq, gc = fattori dipendente dall'inclinazione del piano campagna $z\gamma$, zq, zc = fattori correttivi per analisi dinamica dipendenti da kh

Nel caso in esame, trascurando il fattore coesione a favore della sicurezza, la suddetta formula diventa:

$$qlim = Rd = q' \cdot Nq \cdot sq \cdot dq \cdot iq \cdot bq \cdot gq \cdot zq + 0.5 \cdot \gamma \cdot B \cdot N\gamma \cdot s\gamma \cdot d\gamma \cdot i\gamma$$

Per le fondazioni superficiali si sono utilizzate la formula di Brinch-Hansen per il calcolo della portata limite e la formula di Burland e Burbidge per il calcolo del cedimento atteso.

Calcolo del valore Rd (Qlim allo SLU) con Approccio 2 – combinazione A1+M1+R3

	AREA 1 CON RIPORTO				
Fondazione	PLINTO 1X1	PLINTO 2X2	PLINTO 3X3		
Larghezza B	1,00 m	2,00 m	3,00 m		
Lunghezza L	1,00 m	2,00 m	3,00 m		
Profondità D da piano campagna	- 2,50 m				
Peso di volume terreno γ		8 kN/mc			
Angolo d'attrito φ		30°			
Coefficiente R3	2,3				
Analisi statica	302,54 kPa = 325,85 kPa = 414,19 kPa =				
Qlim = Rd _s	3,08 Kg/cmq	3,32 Kg/cmq	4,22 Kg/cmq		

	A	REA 2 SENZA RIPORTO	
Fondazione	PLINTO 1X1	PLINTO 2X2	PLINTO 3X3
Larghezza B	1,00 m	2,00 m	3,00 m
Lunghezza L	1,00 m	2,00 m	3,00 m
Profondità D da piano	- 1,30 m		
campagna		.,00	
Peso di volume terreno γ		8 kN/mc	
Angolo d'attrito φ		30°	
Coefficiente R3	2,3		
Analisi statica Qlim = Rd _s	168,51 kPa = 1,72 Kg/cmq	217,80 kPa = 2,22 Kg/cmq	231,67 kPa = 2,36 Kg/cmq

N.B.: i valori di pressione limite ricavati andranno verificati agli stati limite ultimi dal progettista in funzione dei carichi previsti, ma non sono direttamente utilizzabili in quanto necessitano di verifica in termini di cedimenti.

5.2 Determinazione dei cedimenti dei terreni fondali allo stato limite d'esercizio D.M. 17.01.2018 (SLE)

Per il calcolo dei cedimenti si è fatto riferimento alla relazione di Burland e Burbidge come di seguito riportata:

$$S = f_s f_h f_t \left[\sigma'_{V0} B^{0.7} \frac{I_C}{3} + (q_i - \sigma'_{V0}) B^{0.7} I_C \right]$$

nella quale:

qi = corrisponde alla pressione esercitata dalla fondazione sul terreno

 σ'_{v0} = tensione verticale efficace agente alla quota di imposta delle fondazioni

 $I_{\rm C}$ = indice di compressibilità = $Ic = \frac{1.706}{N_{_{AV}}^{_{_{_{_{1}}}}1.4}}$

B = larghezza della fondazione, espressa in m

 N_{AV} = media N_{SPT} all'interno della profondità significativa z_i

 z_i = profondità significativa pari a 2B nel caso in N_{SPT} siano decrescenti, tabulati come segue se N_{SPT} sono crescenti:

B (m)	z _i (m)	
2	1.63	
3	2.19	
5	3.24	
10	5.56	

f_S = fattore correttivo di forma = $F_S = (\frac{1.25 \times \frac{L}{B}}{\frac{L}{B} + 0.25})^2$

 f_H = fattore correttivo di spessore = H/z_i x (2 - H/z_i) di cui si tiene conto se lo spessore H dello strato compressibile è inferiore a z_i (f_H = 1 nel caso in cui lo strato compressibile sia maggiore di z_i)

 f_t = fattore correttivo di tempo = f_t = (1 + R_3 + R_3 x log t/3)

t = tempo espresso in anni

R₃ = costante pari a 0.3 nel caso di carichi statici e a 0.7 nel caso di carichi dinamici

R = costante pari a 0.2 nel caso di carichi statici e a 0.8 nel caso di carichi dinamici.

I risultati ottenuti sono i seguenti:

		AREA 1 CON RIPORTO				
	PLINTO 1X1	PLINTO 2X2	PLINTO 3X3			
APPROCCIO	A1+M1+R3					
N _{AV}	28	28	28			
Indice di compressibilità terreno a (Ic)	0,016067851	0,016067851	0,016067851			
fondazione	1,00 x 1,00 m	2,00 x 2,00 m	3,00 x 3,00 m			
Profondità di imposta da piano campagna	- 2,50 m					
PRESSIONE LIMITE (Qlim/y _R) Condizioni statiche	302,54 kPa = 3,08 Kg/cmq	325,85 kPa = 3,32 Kg/cmq	414,19 kPa = 4,22 Kg/cmq			
Cedimento immediato Edi	7,26 mm	10,80 mm	15,12 mm			
Cedimento differito in 30 anni con carichi statici Ed30	10,88 mm	16,20 mm	37,81 mm			

	AREA 2 SENZA RIPORTO				
	PLINTO 1X1	PLINTO 2X2	PLINTO 3X3		
APPROCCIO	A1+M1+R3				
N _{AV}	28	28	28 0,01883055		
Indice di compressibilità terreno a (Ic)	0,016067851	0,01883055			
fondazione	1,00 x 1,00 m	1,00 x 1,00 m 2,00 x 2,00 m			
Profondità di imposta da piano campagna	- 1,30 m				
PRESSIONE LIMITE (Qlim/γ _R) Condizioni statiche	168,51 kPa = 1,72 Kg/cmq	217,80 kPa = 2,22 Kg/cmq	231,67 kPa = 2,36 Kg/cmq		
Cedimento immediato Edi	4,04 mm	8,47 mm	9,92 mm		
Cedimento differito in 30 anni con carichi statici Ed30	6,06 mm	21,18 mm	24,79 mm		

I valori di cedimento ricavati per i plinti rientrano quasi tutti nel limite dei 25 mm di cedimento massimo ammissibile per tale tipologia di struttura, ad eccezione del plinto 3x3 dell'area 1 con il riporto (impostato a -2,50 m da piano campagna). Si procede alla reiterazione del calcolo, che conduce ai seguenti valori di pressione agli S.L.E. (Q_{amm}) di seguito riportati.

	AREA 1 CON RIPORTO	
	PLINTO 3X3	
PRESSIONE agli S.L.E. Condizioni statiche	270 kPa = 2,75 Kg/cmq	
Cedimento immediato Edi	9,84 mm	
Cedimento differito in 30 anni con carichi statici Ed30	24,60 mm	

I calcoli eseguiti forniscono al progettista una guida nella scelta delle dimensioni della fondazione in funzione dei carichi previsti. Tuttavia, i valori ottenuti devono comunque essere verificati dal progettista in relazione ai carichi attesi.

6. TERRE E ROCCE DA SCAVO

Per quanto riguarda la gestione delle terre e rocce da scavo è attualmente in vigore il **D.P.R. 13 giugno 2017 n. 120** "Regolamento recante la disciplina semplificata della gestione delle terre e rocce da scavo [...]", secondo il quale, in caso di scavi e/o riporti, occorre comunicare all'autorità competente (ARPA e Comune) l'utilizzo delle terre e rocce da scavo comprensivo di analisi chimica dei terreni soggetti ad intervento.

Pertanto, sarà necessario eseguire un'analisi **chimica dei terreni** presso un laboratorio certificato secondo quanto previsto dal D. Lgs n. 152/2006, ed in particolare i parametri dovranno risultare inferiori alle Concentrazioni Soglia di Contaminazione (CSC) riportate nella Colonna A (siti ad uso verde pubblico e privato e residenziale) della tabella 1 riportata nella parte IV, titolo V allegato 5.

7. CONSIDERAZIONI CONCLUSIVE

La committenza intende realizzare un nuovo capannone ad uso deposito, con una porzione adibita ad uffici ed abitazione, in Via Brughera IV s.n.c. in comune di Boca (NO). I lotti di intervento sono identificabili al catasto Foglio 9 – Mappali 478-648-649.

Dal punto di vista geologico e geotecnico si può riassumere quanto segue:

- L'area d'indagine è costituita da depositi fluvioglaciali (Pleistocene medio): ghiaie e sabbie in matrice fine, alternate a limi argillosi e ricoperte da paleosuoli e loess.
- L'area presenta terreni di riporto con spessori medi di 1,50 m nella parte centrale della proprietà, distribuiti in modo non uniforme. Si evidenziano inoltre ristagni delle acque meteoriche al contatto con i sottostanti terreni argillosi in quanto presentano una permeabilità molto bassa. <u>Tale caratteristica rende indispensabile, in fase esecutiva, la realizzazione di un</u> opportuno drenaggio ed un corretto allontanamento delle acque dalle fondazioni in progetto.
- La soggiacenza della falda nell'area è di circa –15,00 m da p.c. con una direzione di flusso principalmente NW-SE. Dal punto di vista dell'idrografia superficiale nella lottizzazione e nel suo immediato intorno non sono presenti corsi d'acqua o canalizzazioni delle acque superficiali.

Per la caratterizzazione geotecnica dei terreni di fondazione si sono utilizzati dati ricavati dalle n.5 indagini penetrometriche eseguite in sito in data 15 novembre 2023:

Le indagini penetrometriche hanno individuato la presenza di 4 strati:

n. strato	Spessore medio	Caratteristiche litologiche
1°	0-1,50 m	Terreno di riporto
2°	0,70 m	Terreni vegetali
3°	0,60-0,80 m	Terreni argillosi debolmente addensati
4°	//	Terreno ciottoloso-argilloso denso con aumento graduale dell'addensamento in funzione della profondità

 Nello specifico i calcoli geotecnici sono stati sviluppati per plinti di 1x1 m, 2x2 m e 3x3 m, come indicazione al progettista. La quota d'imposta è stata definita sul quarto strato, ossia a -2,50 m nell'area con materiali di riporto e a -1,30 m nella porzione senza riporto. Le pressioni agli S.L.E. (Qamm) risultano essere:

	AREA 1 CON RIPORTO			AREA 2 SENZA RIPORTO		
	PLINTO	PLINTO	PLINTO	PLINTO	PLINTO	PLINTO
	1X1	2X2	3X3	1X1	2X2	3X3
fondazione	1 x 1 m	2 x 2 m	3 x 3 m	1 x 1 m	2 x 2 m	3 x 3 m
Profondità di	- 2.50 m			- 1.30 m		
imposta da p.c.	- 2,50 111			- 1,00 111		
PRESSIONE	302,54 kPa =	325,85 kPa =	270 kPa =	168,51 kPa =	217,80 kPa =	231,67 kPa =
agli S.L.E.	3,08 Kg/cmq	3,32 Kg/cmq	2,75 Kg/cmq	1,72 Kg/cmq	2,22 Kg/cmq	2,36 Kg/cmq

I valori così ricavati sono proposti e andranno comunque verificati dallo strutturista in funzione dei carichi agli SLU e agli SLE.

Per quanto riguarda la presenza di acque di ristagno provenienti da monte per la conformazione morfologica dell'area, che si presenta ribassata rispetto alle aree di monte, sarà opportuno eseguire intorno all'area di edificazione un drenaggio che allontani le acque circostanti. Inoltre, si suggerisce di posizionare su tutta l'area uno strato drenante, anche con tubi passanti collegati al fosso laterale, per evitare la risalita delle acque lungo le fondazioni e la pavimentazione.

